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Summary 

We show that the free-convective boundary-layer flow in a porous medium in the vicinity of a parameter value at 
which similarity solutions cease to exist is of semi-jet form. 

1. The equation and analysis 

The equat ion 

f ' "  + i f "  - f lf '2 _ 0 (1) 

with boundary  condit ions 

/ ( 0 ) = 0 ,  f " ( 0 ) = - l ,  f ' ( ~ ) ~ 0 a s ' o ~  (2) 

arises in a problem involving free convect ion in a porous  medium, and numerical  solutions 
have been given for values of  fl in the range - 1 < fl ~< 1 by Merkin [1]. One  can infer 
f rom the numerical  results that  as fl $ - 1 bo th  f (oo )  and f ' (0 )  are becoming  large, and 
indeed Merkin has shown that when fl = fl* = - 1 there is no  solution of  (1) subject to (2). 
This behaviour  has some similarities to that found by Banks [2] who investigated solutions 
o f  (1) subject to the boundary  condit ions 

f (0)=0 ,  f ' (0 )= l ,  f ' ( r / ) ~ 0 a s 7 1 ~ ,  

and which governs the flow near a stretching impermeable  wall. The  critical value for fl in 
this case is - 2  and the structure of  f ( , / )  in the ne ighbourhood  of  fl = - 2  was presented 
in [2]. The purpose  of  this brief  note is to present the analogous structure of  f(~l) as 
defined by  (1) and (2) for the case when 0 < 1 + fl << 1. 

With c = 1 + fl > 0 we look for a solution of  (1) by  writing 

f ( ~ )  = , P F ( z ) ,  z = ~q 'o .  (3) 

A solution in which there is a balance between all three terms in equat ion (1) is possible 
provided that  p = q and that F(z )  satisfies 

F "  + F F "  + ( 1  --  c ) F ' 2  = 0 ,  (4) 
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where dashes now signify differentiation with respect to z. The second relationship 
between p and q is obtained by integrating (1) across the boundary layer to get 

O 0  

(1 + fl)fo / ' 2d r /=  1, (5) 

if we assume a suitable decay rate for f '  as *1 ~ o¢. Substitution of (3) into (5) yields the 
relationship 2p + q = - 1 and so p = q = - 1/3. The boundary conditions become 

F ( 0 ) = 0 ,  F " ( 0 ) = - , ,  F'(z)--)Oasz---}o¢,  (6) 

while the integral (5) becomes 

fo ~F'2dz = 1. (7) 

By first writing equation (1) in terms of von Mises variables, where f ' (~ )  is regarded as a 
function of f ,  Merkin gave an approximate method of solution which gives very good 
agreement with the numerical results. It is also possible to deduce from the approximate 
analysis that, as in the exact treatment given here, f(*l) - c -1/3 and f ' ( 0 ) -  ¢-2/3. 

We now look for a solution of (4) subject to (6) and (7) by writing 

F ( z )  = Fo(z ) + , F l ( z  ) + O(¢ z) (8) 

and find 

Fo" + FoF~)' + F'2o=O, 

FI"  + FoF~' + 2F~)F~ + F~)'F 1 =F(~ 2, 

(9) 

(lO) 

with boundary conditions 

Fo(O ) = F~'(O) -- O, F~)(z) -~ 0 as z --) ~ ,  (11) 

F I ( 0 ) = 0 ,  F ; ' ( 0 ) = - I ,  F ; ( z ) ~ O a s z ~ o o .  (12) 

The solution of (9) which satisfies the boundary conditions (11) and the constraint 
f~F'2dz = 1 from (7) is 

F o = a tanh(az/2) ,  (13) 

where a = 3 I /3.  It is of interest to note that the leading term found here coincides with a 
half of the well-known two-dimensional free-jet solution, whereas in the analogous 
problem considered by Banks, referred to above, the limiting flow was of wall-jet type. 

It is also possible to find the next term in (8) without too much labour. We find that the 
solution of (10) which satisfies the boundary conditions in (12) is 

F 1 = a sech2~'fo¢ { ] cosh20 (log cosh 0 - O) - ½ + B cosh20 } dO, 
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where ~ = az /2  and B is a constant. The latter is determined by satisfying the constraint 
in (7) which becomes, to this order, .[~°F(~F~dz = 0, and on carrying out the details we 
obtain 

B = (24 log 2 - 10) /9 .  

The salient properties given by Merkin are f ' (0 )  and f (oo)  which, for 0 < 1 +/3  << 1, we 
have shown can be written 

f ' ( 0 )  = , - 2 /3 [  a2/2  + [a2(24 log 2 - 7 ) / 1 8 ] ,  + O(¢2)} 

and 

f (oo)  = , - 1 / 3 { a  + [a(6  log 2 -  5 ) / 9 ] ,  + 0 (¢2 )} .  

For fl = - 0 . 9  Merkin gives f ' ( 0 ) =  5.016 and f ( ~ ) =  3.079 whereas the two terms of the 
asymptotic theory given here lead to 5.022 and 3.078 respectively. 

It is now possible to proceed, as did Banks, to situations in which fl < - 1, and argue 
that the asymptotic flow in this r6gime is related to the semi-jet form given in (13) albeit 
with a different argument. Full details are given in [2] and indeed a full numerical 
investigation of the problem of a stretching wall is in progress in which the similarity 
solutions are linked to flows of non-similarity type. 
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